


Genetic analysis of calf survival in Dutch Holstein calves

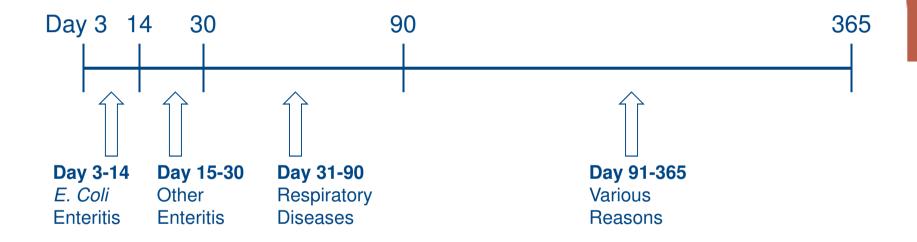
Mathijs van Pelt Animal Evaluation Unit

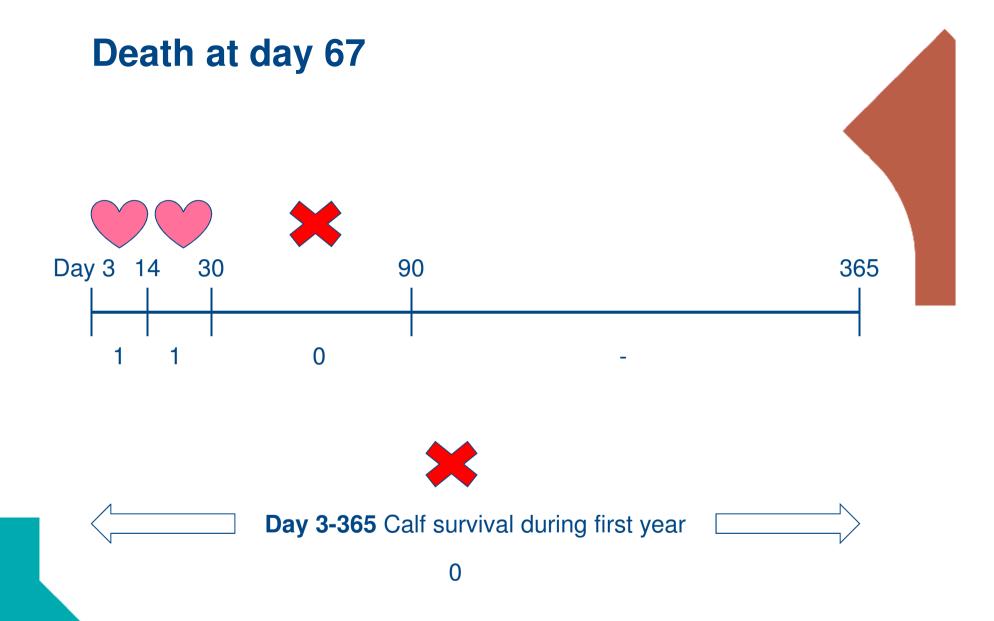
29 August 2012

Content

- Introduction
- Definition of calf survival
- Material and methods
- Results
- Conclusions

Introduction


- Current situation
 - Survival around birth (BVE livability/still birth)
 - Survival after first calving (BVE longevity)
- Nothing is known about survival in the rearing period
 - Economically important
 - Monitoring
- Breeding goal is calf survival of replacement heifers in the first year of rearing
- Aim: Development of a genetic evaluation for calf survival


Distribution of calf mortality

Trait definition of calf survival

Day 3-365 Calf survival during first year

Data selection

- Female herdbook calves with known sire
- At least 75% Holstein Friesian
- Sire is an Al-bull
- Born and culled in the same herd
- Calves born between 2002-2009
- Herds with at least 100 calves
- Herds with conventional rearing policy
- Bulls with at least 25 progeny in at least 10 herds
- In total 522,335 records from 3,253 herds and 4,258 sires

Results Survival per period

Period	Survival (%)		
day 3 – 365	93.55		
day 3 – 14	97.41		
day 15 – 30	98.81		
day 31 – 90	98.56		
day 91 – 365	98.65		

Statistical model

Linear sire model

$$Y = HERD + YM + P + sire + e$$

= observation of calf survival Y

Herd = herd of birth (fixed)

YM = year x month of birth (fixed)

= parity of dam (fixed)

= additive genetic effect (random) sire

= residual (random)

Results Genetic parameters

	d 3 - 365	d 3 - 14	d 15 - 30	d 31 - 90	d 91 - 365	gen.sd. (%)
day 3 - 365	0.011	0.62	0.63	0.83	_2	2.49
day 3 - 14	0.85	0.006	0.00	0.00	0.00	1.20
day 15 - 30	1.00^{1}	0.90	0.002	0.00	0.00	0.46
day 31 - 90	0.97	0.44	0.71	0.001	0.00	0.45
day 91 - 365	_2	0.19	0.51	0.67	0.005	0.82

blue = genetic correlation; red = error correlation

¹ fixed at boundary

² did not converge

Predictor traits

- Veal calves

Day 3 – 14 together with replacement heifers

- Day 15 180
- Data from all calves could be used potentially
- Use in genetic evaluation

	day 3 - 365	day 3 - 14	day 15 - 180	gen.sd.(%)
day 3 – 365	0.011	0.62	0.00	2.49
day 3 – 14	0.85	0.006	0.00	1.20
day 15 – 180	0.66	0.37	0.005	1.12

blue = genetic correlation; red = error correlation

Results Reliability of bulls

Status	Number of progeny			Reliability		
<u>bull</u>	day 3-365	day 3-14	day 15-180	day 3-365	day 3-14	day 15-180
test 1	0	319	0	44	48	32
test 2	0	324	78	46	49	37
test 3	184	411	198	62	61	50
First daughters in production						
proven 1	313	810	334	70	69	57
proven 2	4,889	10,913	4,909	94	95	88
proven 3	24,849	51,388	22,753	98	99	97

Conclusions

- Possible to estimate genetic parameters for calf survival
 - $-h^2$ is 0.011 for day 3-365
- Genetic variation exists
 - $-\sigma_{q}$ is 2.5%
- Day 3-14 is a good early predictor
- Data of veal calves can be used as predictor
- Reliability of progeny tested bulls will be around 60%
- Genetic evaluation enables monitoring of calf survival

Follow up

- Introduction breeding value estimation
 - Probably April 2013
 - Enough data available
 - Around 1 million calves per year

Thank you for your attention

Questions?

